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STJMMARY 

An investigation  to-  determine  the  aerodynamic  characteristics  of a 
semispan  delta  wing  equipped  with an aerodynamically  balanced  triangular 
control  mounted on - a  skewed  hinge  .axis  was  made in the  Langley  high-speed 
7- by 10-foot  tunnel by means  of  the  transonic-bump  method.  The  wing  had 
60° of sweepback  at  the  leading  edge, an aspect  ratio of 2;31, a taper 
ratio  of 0, and  an  NACA 65-006 airfoil  parallel  to  the  free  air  stream. 
Lift,  drag,  pitching-moment,  rolling-moment,  and  hinge-moment  data  are 
presented  for a range  of  angle  of  attack  and  control  deflection  through 
a Mach  number  range of 0.6 to 1.18.- The  mean  Reynolds  numbers  at  which 
the  tests  were  conducted  varied  from 1,100,000 to 1,500,000. 

The  data  indicate  that,  the  balanced  control  was  effective  in 
producing  changes  in  lift,  pitching  moment, and rolling  moment  at d l  
Mach  numbers  investigated.  The  control  was  overbalanced  in  the low 
ranges of control  deflection  and  angle  of  attack  and  was  more  sensi- 
tive  to  changes in Mach  number  than  was an unbalanced  triangular 
control  of  generally  similar  plan  form. 

INTRODUCTION 

Because  of  the  urgent  need  for  aerodynamic data in  the  transonic . 
speed  range, an integrated  program  of  transonic  research  has  been 
initiated by the  National  Advisory  Cammittee  for  Aeronautics. As an 
extension  of  the  transonic  research  program, a series  of  delta-shaped 
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wings with 60' o f  sweephack  at  the  leading  edge 

NACA RM ~ 5 0 ~ 0 1  . . .. 

a 

and.  with.  various  control- 
. .  

surface  configurations- are being  invest-igated-by  the  transonic-bump  method 
in  the  Langley  high-speed 7- by 10-foot  tunnel. 

e -  - 

Presented in this paper  are.  the  results of an  investigation of a 
semispan  model  of a delta. wing with 60' sweepback  at  the  leading  edge 
which was equipped  with a large  triangular  control  having an overhang 
balance  mdunted on a skewe.d  hinge  axis.  The  purpose ofthis investiga- 
tion  was to determine  the  aerodynamic  characteristics  of a delta  wing ' 

yith a control  which  was  designed  to  provide-aer.gdynamic  balance  at- 
zero  control  deflection  based on the  span  load  distribution of 
reference 1. 

.- 

- 

COEFFICIFII?TS m SYMBOLS 

Cm 

ch 

9 

S 

b 

lift  coefficfent lift  of  semispan 
(4s 

I \ 

drag  coefficient drag  of-  semispan 
(4s 

rolling-moment  coefficient, at plane ofsymmetry 

moment of semispan 

pitching-moment  coefficient  referred  to O . 2 5 E  

pitching t of  semispan 
qss. 

control  hinge-moment  coefficient  about  hiqge  axis 

effective  dynamic  pressure  over  span  of  model,  pounds  per square 
foot (p-) 

twfce wing area ohemispan model,  0.144.square  foot 

twice span of  semispan  model, 0.378 foot 
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C 

Y 

M1 

mean aerodynamic chord of wing (E [’2 c2 d 4 ,  0.333 foot  

l o c a l  wing chord, f e e t  

spanwise distance f rom plane of symmetry 

area moment of control  surface aft of  hinge  axis, measured about 
hinge axis,  0.00113 f o o t  cubed 

mass density of a i r ,  slugs per  cubic  foot . 

average  free-stream air velocity, feet per second 

effect ive Mach  number over span of model 

average  chordwise Mach .number 

loca l  Mach  number 

Reynolds number of wing based on E 

angle of attack,  degrees 

control   def lect ion  re la t ive  to  wing-chord plane, measured 
perpendicular  to  control  hinge axis (posit ive when t r a i l i n g  
edge is down), degrees 

= (ac 2/  a+ 
The subscript a indicates  that  the  angle of 

= ( a k / b ) a  
at tack was held  constant a t  a = 0’. 

The subscript 6 indicates that the  control 
deflection was held  constant a t  6 = 0’. 

I_ 
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MODEL AND APPARATUS 

NACA FM LwLO1 
c 

The semispan wing had 60° of 6weepback.a-t .the  leading edge, Oo sweep 
a t   t h e   t r a i l i n g  edge, with a taper   ra t io  ofO, an aspect   ra t io  of 2;3l, 
and an NACA 65-006 a i r fo i l   sec t ion   para l le l  t u  the free a i r  stream. A 
sketch of the model as mounted on the bump i n  the tunnel i s  presented 
i n  figure 1.. The .wing was  made. of a bismuth m d   t i n   a l l o y  bonded to  a 
tapered steel core. Wing coptours  were..generated  by  straight-line 
elements from the   t i p   t o   t he  a i r f o i l  s ec t ion   a t   t he . roo t .  

The control ,   t r iangular   in  shape  and  hinged about-an  axis  canted I 

forward a t  an  angle of 45O with  the  mot chord of the wing, had a 
constant-chord  overhang.balance of 71 p e r c e t  of the maximum con-3 
chord measured rearward of and perpendicula-r t o  .the.  hinge l i ne .  The 
overhang-balance area was 55 .percent o f  - the  total   control .   area.  Two 
support  hinges were .-ea,. one outboard on the wing and. the  other con- 
cealed  in  the housing of the bump.  The overhang had-an   e l l ip t ica l  . 

leading edge which was aired . into  the contour of the  a i r foi l   sect ion 
rearward of the  hinge  line. 

The  model w a s  mo-Wited ve r t i ca l ly  on an electrical   strain-gage 
balance  enclosed  within a chamber in the bump. The wing l i f t ,  drag, 
pitching moments, and ro.Jlag moments, and the f l ap  hinge momenta 
were measured with a calibrated  electrical  potentiometer. The balance 
chamber was sealed  except  for 8 .small rectangular  clearance  hole . . 

through which an extension.of  the wing core passed.  This  hole was 
covered  by  the-wing-root end plate,  mounted approximahly 0.05 inch 
above the  surface of the bump. 

.. 

The tests were made i n  the Langley  high-speed 7- by.lO-foottunne1 
by means of an extension of the  NACA wing-flow technique for   a t ta in ing  
transonic  -speeds. The "mhnique  used  involve-s testing  the.  model i n  
the  local  high-speed:flow  field induced  over the curved surface of a 
bumpmounted on the  tunnel f l o o r  as  described i n  reference 2. -: 

Typical  contours.depicting  local Mach nugber distribution  over 
the test, area of the b u q  with  the'model  removed.are showii i n  figure-2. 
The contours  indic&te a Mach number variation  over. the wing eemispan .. - . .  - 

of.about 0.04 a t  low'Mach numbers and from 0.U5 t o  0.06 in  the  higher 
ranges. T3e dashed l i n e s   a t   . t h e  r o o t  of..the model in  f igure 2 indicate 
the  estimated  extent o f .  the boundary layer .with a Local Mach number, 
a t  the  dashed l ine ,  of approximately 95 percent of the maximuq loca l  . . .. 

- . . .  

" 
" 

" - 
I 



NACA FM L50L01 - 5 

Mach  number  outside  of  the  boundary  layer.  The  effective  test  Mach 
number  was  obtained  from  contour  charts  similar to those  presented in 
figure 2 by using  the  relationship 

M = 2 S [ I2  &a dy * 

Force  and  moment data were  obtained  through a Mach  number  range  of 
0.60 to 1.18 and  an  angle-of-attack  range  of -2O to 6 O  with a  few tests ' 
extended  to 8 O. Control  deflections  investigated  were f r o m  -10' to 10'. 
The  variation of mean  Reynolds  number  with  Mach  number  is  presented  in 
figure 3 and  varied from 1,100,000 to 1,500,000. The  boundiries  of  the 
figure  are  indications  of  the  possible  range in Reynolds  number  caused 
by variations in test  conditions. 

CORRECTIONS 

The  lift,  drag,  and  pitching  moments  represent  data  for  the  complete 
wing  with  controls  mounted on both  semispans. 

L .  

Rolling  moment  of  %he  semispan  wing  is  presented  as gross rolling- 
.. . . .. 

moment  coefficient. No reflection-plane  corrections  were  applied  to  the 
rolling-moment  data  because  of  the  unconventional  arrangement  of  the 
control  surface,  balance,  and  skewed  hinge  axis  and  because  no  correc- 
tions  are  available  that  apply  in  the  transonic  and  supersonic  speed 
ranges. It is  of  interest to note,  however,  that  the  corrections  appli- 
cable  to  conventional  wing-aileron  configurations  at  the  lower  speeds  of 
around M = 0.3 _reduce  the  incremental  rolling-moment  coefficients  due 
to  control  deflections  approximately 40 percent. 

The  peculiarity  of  the  design  of  the  wing  necessitated  the  use of 
a relatively  long  and  thin  control  spar  extension  at  the  inboard  hinge 
which  permitted  measurable  deflection in torsion when-loads  were  applied. 
Static  1oad.ing  tests  indicated  this  deflection  to  be a direct  function 
of the  hinge  moment  applied, and corrections  were  made  accordingly. 
The  wing  proper,  when  statically  loaded  to  anticipated  air-load  limits, 
was  found  to  have  negligible  deflection in torsion  and  bending;  there- 
fore no corrections  were  applied. 

TiESULTS AND DISCUSSION 

The  variation  of  lift,  drag,  pitching-moment,  hinge-moment,  and 
I rolling-moment  coefficients  with  control  deflection for each  Mach  number 
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. 
investigated is presented  in  figures 4 t o  '11. Although the model einployed 
a symmetrical a i r f o i l  section, asymmetry of data for   the  posi t ive md c 

negative  ranges of co.n.trol.deflection  is.apparent in figures 4 t o  U. 
This asymmetry can be a t t r i bu ted   t o  mall inaccuracies of construction 
and t o   s l i g h t  errors in setting  angle of attack and control  deflection .. 

during the testy- - . : . 

.. . 
. .  . .. 

. . . . . . . . . . . .-  . 

Examination o f f i g u r e s  4 t o  11 indica tes   tha t   the   f lap  was effec- 
t i v e  in  producing ch&nges $g l i f t -and p i t c h h g  moment throughout the 
range of Mach numbers investigated. The variation of l i f t  and 
pitching moment with.contro1.  deflection wa8. nonlinear and increased 
in   the  higherranges of  deflection. 

The values of drag  coefficient and gross rolling-moment coefficient 
produced at a specific.  control  deflection  generally  increased w i t h  
increase i n  Mach  number  up t o  M = 1 .O and  decreased s l igh t ly  from 

M = 1.0 t o  M = 1.18. 

" 

.- 
" 

The control was overbalanced a t  small deflections a t  all Mach 
numbers ( f igs . .   Gto.  11) , Increase  in Mach  number increased the degree 
of overbalance and extended it over a s l igh t ly  wider range OF- 
deflections. 

.. . . 
. . . . - . . 

.. . - 

The variatfon of  hinge-mment coefficient with angle of a t tcck at 
. . "  

a control  deflection of 0' fo r  all Mach numbers investigated i s  presented 
i n  figure 12. The.contro1 was overbalanced in- the low ranges of angle of 
attack a t  all Mach numbers investigated. A t  Mach numbers above M = 1.0, 
the region  of-overbalmce  extended mer the complete  range of angle of ' 

attack. 

. -  

- 
It is -appropriate st this p o i n t t o   n o t e - t h a t  the overbalance of the 

control can  probably be a t t r ibu ted   to   the   fac t  that th'e. spanwise loading 
of a t r imgu la r  wing, rather than  being f u l l y   e l l i p t i c a l  as predicted 
in  reference 1, falls off appreciably a t  the  t ips.   This lose of t i p  
loading,  unpredicted in the.  theory,  cbuld  account  for  the  overbalance 
a t  low angles of attack. As the angle of attack of a triangular wing 
i s  further increased,  the.centers .of pressure a t  chordwise sections nea r  
the t i p  move progressively rearward, as shown i n  reference 3, with  the 
consequent  reduction i n  overbalance of the control under  discussion. 

- 

The model used in- this  investigation. w a s  somewhaf, similar t o  a 
model used in  the  investigation reported in  reference 4, as can be 
noted on the comparative  sketches of the two models in figure.13. The . 

controls used on the two moaels are considered  representative of a 
general  type, one aerodynamically  balanced and the other unbalanced, 
i n  that the surfaces r e w a r d  of the skewed hinge  axes are generally 
similar. . .  

. . "  
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A comparison  of  the  incremental  lift  coefficient  at  various  control 
deflections  at  zero  angle  of  attack  for  several  Mach  numbers  is  presented 
against  hinge-moment  coefficient  in  figure 14 for  the  balanced  control 
and  for  the  plain  triangular  control  of  reference 4. The  balknced 
control  was  tested  at  Reynolds  numbers  from 1,100,000 to 1,500,000 while 
the  plain,  unbalanced  control  of  reference 4 was  tested  at a constant 
Reynolds  number  of 3,2OO,OoO. For this  comparison,  control  deflections 
of  the  wing  of  reference 4 were  considered  to  be  measured in a plane 
perpendicular to the  control  hinge  axis. 

An examination  of  figure 14 shows  that  the  balanced  triangular 
control  was  more  effective  in  producing  lift  for a given  value  of 
hinge-moment  coefficient  than  was  the  plain  control.  This,  however, 
may be  partly  attributable  to  the  nonlinearity  of  the  hinge-moment 
characteristics of the  former.  This  trend of increased  effectiveness 
for  the  balanced  control  became  more  pronounced  with  increase  in  Mach 
number. 

The  control  effectiveness  parameters  presented  against  Mach  number 
in  figure 15 were  obtained-from  figures 4 to 11. The  linear  variations 
of  aerodynamic  characteristics  were  generally  contained  within a control 
deflection  range of *2O, and  the  slopes  presented  were  obtained  within 
this  range.  It  should be.noted that  this  linear  range  of  deflection 
was  within  the  region  of  control  overbalance.  Presented  as  comparisons 
with  the  control  parameters  of  the  balanced  triangular  control are 
similar  'control  parameters  of  the  plain  control  of  reference 4. 

Lift  effectiveness Ch and  pitching-moment  effectiveness C% 
of the  balanced  control  increased  up  to  high  subsonic  speeds,  above 
which  the  effectiveness  decreased rapidlywith further  increase in 
Mach  number. The values  of C h  and  Cms  of  the  plain  control 
exhibited a lesser  increase  with  Mach  nuniber  and  generally  were  approxi- 
mately 25 percent  of  the  corresponding  values  for  the  balanced  control. 

1 

The  values  of C and C for  the  balanced  control  became  more 
hs h, 

positive  with  increase in Mach  number up to M = 0.95 and M = 1.0, 
respectively,  and  then  rapidly  decreased  until M equaled 1.18; 
whereas  chs  and C h  for  the  plain  control  increased  negatively  with 
increase in Mach  number. 

Rolling-moment  effectiveness  Cz8  increased  except  for a sharp 
reversal in trend in the  transonic  speed  range. 
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The results of  the  investigation on the  balanced  con”O1  indicate 
the   p laus ib i l i ty  of incorporating an aeroaynamic balance on a tr iangular  
control of a de l t a  wing that will increase l i f t  effectiveness of the  
control  while  maintaining  hinge moments within  practical  limits. . .  

The ba lbced   con t ro l   fo r  all aerodynamic characterist ics  studied 
was m o r e  affected by compressibility  than was a  plain  control of 
generally similar plan. form. 

.. 

Langley  Aeronautical  Laboratory 
National  Advisory Committee f o r  Aeronautics 

Langley Field, Va . 
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Area(tw1ce semispan) 
Span (t rice semispan) 
Mean aerodynamic chord 
Aspect ratio 
Taper ratlo 
lncide n ce 
Dihedral 
Airfoil section parallel 
to f e e  air stream 

DATA 

0,144 sq ft  
0.578 ft 
0333 f f  
231 
0 
00 
O0 

NACA 65 476 

tf 
L\ 

Scale incbes - 
2.5 --- 0 1 2  

Wing end plate w v  
4 z5- 

Figure i.-Geflsral arrangement of model of 60° delta  wing with triangut'tw 
flap and large overhang balance./ Al l  dimensions in inches.) 
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Figure2 .- Typical  Mach number contours over transonic  bump  in  region of model location. 
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figure 3. -Variafion of test Reynolds number wifh Mach number for model of a 
60" delta wing wifb triangular flop. and overbong  balance,  aspect ratio 2.3 1, 
taper ratio 0, and NACA 65 -006 airfoil. r 
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Control deflection,b, deg 
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. .  Figurs 4."Aerm~rwmic c ~ c ~ t i s t ~ s  of nwdd of 60°deltalwing with trtanguhr flap and overhang 
. .. . baiance,,aspect mtio 231, toper ratio :O,and NACA 65 -006 airfoii. Mr0.6. , .  ? 
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Control deflect'ion,d,deg . Confrol defecfh, 6, deg z 
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Fgue ~"Aemdynarnic chamcteristici ofmodel of 6O"delta wing with trianguhi  flap and o m h y  E balance, aspect ratio 2.31,taper ratio 0, and NACA 65 4 0 6  akbil. M=Q95. P 



, .. . . . . . . . . . . .  . .. .. 
I 

-12 -8 -4 0 4 8 12 

Control deflection,&,  deg 

Figure Z- Concluded, 

5 . . .. 

Control deflection, 8,deg 



. . . . . . . . . . . . 

.24 

0 .6 

4 
/ , 

-8 -4 . o  ' 4 8 
. .  

, -8 -4 0 4 '  8 

Control  deflection,d, deg Gon,'rol  deflecfion,d,deg 
.. Figure  8.-Aerodynomic  chamcteristics ofrrlodelof 60'dello.wing with triangular  fhpland owhang 
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Figure 8. - Con cluded. 
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Figure 9.- Concluded 
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